Chelation-induced reversal of negative cation transference number in ionic-liquid electrolytes


Nicola Molinari and Boris Kozinsky. 3/12/2020. “Chelation-induced reversal of negative cation transference number in ionic-liquid electrolytes.” The Journal of Physical Chemistry. Publisher's Version


Strong anion–cation interaction in lithium-salt/ionic liquid electrolytes leads to ionic association that decreases the Li transference number, even causing it to be negative. We show that these interactions can be greatly reduced by adding cyclic ethylene oxide molecules, and we quantitatively examine the effect using rigorous multispecies concentrated solution theory coupled with molecular dynamics simulations. The added molecules, primarily lithium ionophore V also known as 12-crown-4, have high affinity to lithium, therefore disrupting the lithium cation–anion coupling, resulting in a significantly improved transference number. First, we investigate the lithium–anion spatial correlation by studying their clusters and show that the 12-crown-4 ether allows the formation of previously nonexisting positively charged lithium-containing complexes. We then prove that the chelators actively compete with the anion to coordinate lithium ions by showing that the persistence-over-time of a given anion coordination cage decreases when ionophore molecules are added to the system. Last, we report an increase in the lithium transference number for a variety of chemistries as a function of added 12-crown-4 (and another ionophore, 18-crown-6) molecules, and even positive values can be reached. Our results provide a foundation for new design and optimization strategies to reverse the sign of and increase the transference number in highly correlated concentrated electrolytes.
Last updated on 03/19/2020