Transport anomalies emerging from strong correlation in ionic liquid electrolytes

Nicola Molinari a,*, Jonathan P. Mailoa b, Nathan Craig c, Jake Christensen c, Boris Kozinsky a, b, **

a John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
b Robert Bosch LLC, Research and Technology Center, Cambridge, MA, 02142, USA
c Robert Bosch LLC, Research and Technology Center, Sunnyvale, CA, 94085, USA

ARTICLE INFO

Keywords:
- Ionic diffusion
- Ionic correlation
- Molecular dynamics
- Conductivity
- Sodium batteries
- Ionic liquid
- Transference number

ABSTRACT

Strong ionic interactions in concentrated ionic liquids is shown to result in significant correlations and deviations from ideal solution behavior. We use rigorous concentrated solution theory coupled with molecular dynamics simulations to compute and explain the unusual dependence of transport properties on cation concentration in the Na\(^+\)-Pyr\(_3\)FSI \(^-\) ionic liquid electrolyte. When accounting for intra- and inter-species correlation, beyond the commonly used uncorrelated Nernst-Einstein equation, an anomalously low and even negative transference number emerges for \(x_{NaFSI}\) lower than 0.2. With increasing concentration the transference number monotonically increases, approaching unity, while the total conductivity decreases as the system transitions to a state resembling a single-ion solid-state electrolyte. The degree of spatial ionic association is explored further by employing unsupervised single-linkage clustering algorithm. We emphasize that strong ion-ion coupling in the electrolyte significantly impacts the trade-off between key electrolyte transport properties, and consequently governs the power density of the battery.

1. Introduction

Rapidly developing technologies in transportation and stationary energy storage demand rechargeable batteries that can reliably deliver more energy and power at lower cost. Mobile applications are adopting Li-ion batteries due to their high volumetric and gravimetric energy density, but stationary storage applications are more focused on the cost aspect, driving research efforts in the Na-ion technology [1-3]. While significant research efforts are devoted to higher-capacity cathode materials, it is realized that properties of electrolytes primarily control the power and safety of battery cells [4-7], particularly important aspects for stationary grid-energy storage solutions.

Electrolyte solutions typically contain high concentrations of an alkaline-ion salt in order to optimize transport properties, which determine charge and discharge rate capabilities of the cell. Specifically, what should be maximized is not the total ionic conductivity, which has contributions from all charged and mobile species in the system, but the fraction of conductivity due to the cation of interest (for instance Na\(^+\)), which is measured by the product of the total conductivity and the transference number \(t_{Na}^+\) [3]. Surprisingly, despite the ionic nature as well as the high alkaline-ion salt concentrations often used, the studies aimed at developing a fundamental understanding of transport properties often adopt a dilute limit approach based on the Nernst-Einstein relation [8,9], where inter- and intra-species correlations are ignored [10-14]. In computer simulations, it is often assumed that the overall effect of correlation on the absolute values of conductivity is small at low enough salt concentrations. However, there is no a priori justification for making this approximation in strongly interacting highly concentrated solutions. Additionally, as we demonstrate, transport properties that are of key importance for practical applications, such as the transference number, can exhibit fundamentally different behaviors when correlation is taken into account. A negative transference number has been recently measured experimentally in both polymer- and ionic liquid-based electrolytes [15,16], yet the commonly-adopted Nernst-Einstein approach for uncorrelated diffusion cannot yield a negative transference number.

In this work we showcase the importance of including ion-ion correlations by combining molecular dynamics simulations with fully-correlated multi-species concentrated solution theory. To illustrate the

* Corresponding author.
** Corresponding author. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
E-mail addresses: nmolinari@seas.harvard.edu (N. Molinari), bkoz@seas.harvard.edu (B. Kozinsky).

https://doi.org/10.1016/j.jpowsour.2019.04.085
Received 6 February 2019; Received in revised form 22 March 2019; Accepted 20 April 2019
0378-7753/© 2019 Elsevier B.V. All rights reserved.
importance of ionic correlations, we examine transport characteristics of concentrated Na\(^+\)-salt/ionic liquid electrolytes. Room temperature ionic liquids (or RTILs) exhibit properties such as low volatility, low flammability, and higher chemical and thermal stability as opposed to standard organic solvents, which make them attractive for technological applications as electrolytes [17–21]. RTILs composed of Na\(^+\)/bis(fluorosulfonyl)imide (or Na ‘FSI’\(^-\)) in N-propyl-N-methylpyrrolidinium/bis (fluorosulfonyl)imide (or Pyr\(_{13}\),FSI \(^-\)) have been experimentally investigated up to remarkably high Na‘FSI’ \(^-\) molar fractions, and they exhibit stable cycling at high currents as well as promising transport properties [12,22,23]. Especially interesting are the trends of increasing \(t_{Na}^+\) with increasing molar fractions of Na‘FSI’ in Pyr\(_{13}\),FSI’, while simultaneously the overall ionic conductivity is decreasing [12,22,24]. As mentioned above, optimization of electrolyte transport properties needs to quantitatively consider the trade-off between these two trends. A deeper understanding of these findings and the underlying physical transport mechanisms is needed to enable quantitative design and optimization of this and other electrolyte systems.

As speculations around the aforementioned experimental observations suggest cation-anion aggregation and changes in the cation coordination environment, computer simulations provide a powerful framework to gain fundamental understanding and complement the experimental observations. Molecular dynamics (or MD) simulations can be leveraged to obtain atomistic-level insights into the coordination, mobility, and aggregation between different species, which are nearly inaccessible by experimental studies. It should also be noted that it is rather difficult to reliably measure transference numbers experimentally [25], and MD simulations provide a key complementary investigation tool. Previous MD studies of this electrolyte highlighted the importance of the relationship between sodium dynamics, and the Na‘-N\(_\text{FSI}^{-}\) and N\(_\text{FSI}^{-}\)-N\(_\text{FSI}^{-}\) radial distribution functions (RDF) [11]. Using RDFs at different Na‘-FSI’ concentrations, they hinted at rearrangements of the FSI’ anion, possibly due to the formation of agglomerates, previously postulated to explain the low measured values of \(t_{Na}^+\) at low x\(_\text{NaFSI}^{-}\) [12]. Despite the strong evidence of significant ionic interactions, computational \(t_{Na}^+\) analysis of this and similar ternary Na‘-(or Li‘-)salt/IL systems have been predominantly studied using ideal solution theory and uncorrelated transport analysis [11,12,26], resulting in limited accuracy due to uncontrolled approximations. Originally introduced and developed by Newman and coworkers [27,28], in the literature fully-correlated multi-species concentrated solution theory can be found mainly applied to pure IL systems [29], or IL in solvents such as water, acetone, or polymers [30–32]. Moreover, while Na‘-FSI’ agglomerates are conjectured to explain the observed trends in transport properties of the Na‘-Pyr\(_{13}\),FSI’ system, no direct characterization has been proposed; therefore, there is a missing direct link between correlated ion motion and Na‘-FSI’ cluster population. Such deeper understanding would not only uncover new insights for this system as well as help ingrain current belief, but also serve as case study for the importance of ion correlation in RTIL-based super-concentrated electrolytes.

Our approach, based on a rigorous combination of molecular dynamics with concentrated solution theory, accounts for intra- and inter-species correlation and is able to recover and explain experimentally observed trends in \(t_{Na}^+\). Most notably, a negative \(t_{Na}^+\) is found for x\(_\text{NaFSI}^{-}\) lower than 0.2. Above this concentration \(t_{Na}^+\) becomes positive and steadily increases to values closely matching experimental findings obtained via the Bruce and Vincent analysis (that assumes ideal solution behavior) [33,34]. Also, thanks to the atomistic resolution of the MD approach, we are able to link experimental findings to the formation of Na‘FSI’ agglomerates, which were previously only postulated and that we are able to directly quantify in our work.

### 2. Methods

#### 2.1. Structures generation

To create a low-density non-overlapping initial structure, we place Na‘, Pyr\(_{13}\) (Fig. 1(a)), and FSI’ (Fig. 1(b)) randomly on the vertices of a three-dimensional cubic grid [35].

The equilibration routine (described later) is used to bring the systems to equilibrium density, as there are no entanglement effects at the length-scales that characterize the (small) molecules under investigation. We study the range from x\(_\text{NaFSI}^{-}\) = 0.0 to x\(_\text{NaFSI}^{-}\) = 1.0 with increments of x\(_\text{NaFSI}^{-}\) = 0.1. Note that x\(_\text{NaFSI}^{-}\) = 0.0 corresponds to a pure Pyr\(_{13}\),FSI’ ionic liquid system, while x\(_\text{NaFSI}^{-}\) = 1.0 is a pure Na‘FSI’ salt system. The total number of atoms as well as the number of Na‘, Pyr\(_{13}\), and FSI’ molecules for all x\(_\text{NaFSI}^{-}\) in our simulations is reported in the Supplementary Information, Section 1. To compute ensemble averages and minimize the impact of the structure generation, four independently-generated structures are used for each x\(_\text{NaFSI}^{-}\). The uncertainties for all the reported quantities are computed as standard deviations among the ensemble of four structures at a given x\(_\text{NaFSI}^{-}\), unless otherwise stated.

#### 2.2. Molecular dynamics details

All molecular dynamics (MD) simulations have periodic boundary conditions and are performed using the freely-available LAMMPS code [36]. We adopt the Optimized Potentials for Liquid Simulations (OPLS) force-field from Schrodinger Inc [37], to model the atomic interactions. As commonly done in the ionic liquid literature to mimic the average charge screening due to polarisation, and charge transfer effects, for instance Refs. [38–41], in this work the point charges assigned to every atomic species are rescaled. The cost-effective charge-rescaling is generally adopted to avoid polarisable models, such as self-consistent inducible dipoles [42] or Drude oscillators [43], since their positive gains are counterbalanced by a significant increase in computational cost. In particular, we find that charges reduced to 75% of their original values well reproduce experimental mass density data, as we report in the first part of the result section. The equation of motions are evolved using a velocity-Verlet integrator with a timestep of \(\delta t = 1.5fs\). Temperature and pressure of the simulations are enforced using a Nose-Hoover barostat (1000\(\delta t\) coupling) and thermostat (100\(\delta t\) coupling), respectively [44–46]. Once generated, the structures are equilibrated in order to overcome local energy barriers in search of lower energy minima. The equilibration routine is a multi-stage simulation including energy minimizations, compression/decompression, and annealing stages broadly based on previous works [47,48]. Specific details of the equilibration stages can be found in the supplementary information, Section 2. The production runs for the computation of the transport properties are performed after the equilibration. The Na‘-FSI’-Pyr\(_{13}\),FSI’ systems are evolved for 75ns in order to compute the diffusion properties, namely conductivity, and sodium transference number. These systems are well within the diffusive regime at this time-scales; an example plot of the mean-squared displacement (MSD) for x\(_\text{NaFSI}^{-}\) = 0.1 is provided in the supplementary information, Section 3.

![Fig. 1. Molecular structure of the Pyr\(_{13}\) (a), and FSI’ (b), molecules.](image-url)
2.3. Uncorrelated analysis

The mean-squared displacement (or MSD, Eq. (1)) is the most widely adopted approach to analyze trajectory data to extract transport properties.

\[
\text{MSD}_i = \left\langle \Delta^2 (t) \right\rangle = \left\langle (\vec{r}(t) - \vec{r}(0))^2 \right\rangle, \tag{1}
\]

\(\langle \cdot \rangle_i\) indicates the ensemble average over species \(i\). Using the Einstein relation [8,9], the diffusion constant for particle species \(i\), \(D_i\), can be calculated as the slope of the MSD, Eq. (2).

\[
D_i = \left. \frac{1}{6} \lim_{t \to \infty} \frac{\partial \text{MSD}(t)}{\partial t} \right|_{t = 0} \tag{2}
\]

\(D_i\) is often addressed as tracer diffusion constant, as it can be experimentally measured with isotopic tracer particles, or equivalently with pulsed field gradient NMR. Once the diffusion constant of all the species is computed, the total conductivity of the system can be estimated using the Nernst-Einstein relation [8,9], Eq. (3).

\[
\kappa_{\text{NE}} = \frac{e^2}{6\pi^2 k_B T} \sum_i n_i q_i^2 D_i \tag{3}
\]

Where \(V\) is the total volume of the simulation, \(e\) the elementary charge, \(T\) the temperature, \(k_B\) the Boltzmann constant, \(n_i\) the number of atoms/molecules of the species \(i\), \(q_i\) their numeric charge and \(D_i\) their tracer diffusion constant. Similarly, the transference number of species \(i\) can be defined in terms of the tracer diffusion constants as in Eq. (4) [49].

\[
t^i_{\text{NE}} = \frac{q_i^2 n_i D_i}{\sum_j q_j^2 n_j D_j} \tag{4}
\]

The key advantage of the MSD method lies in its significantly quicker convergence as a function of MD trajectory time, resulting from dropping the cross-correlation terms between particles, effectively assuming all moving objects are independent. In other words, both the inter- and intra-species correlations are ignored.

2.4. Correlation analysis

While it may be reasonable for some systems in dilute regimes, the no-correlation assumption of the MSD approach can hide important physical insights. For ionic liquid systems it is easy to imagine how an intra-species correlations are ignored.

\[
\kappa_C = \sum_i \theta_i \theta_j L_{ij}. \tag{7}
\]

\(\theta_i = F q_i c_i\), \(F\) is the Faraday’s constant, and \(q_i\) and \(c_i\) are the charge number and concentration of species \(j\), respectively. The ratio \(\lambda = \kappa_C/\kappa_{\text{NE}}\) is often used to quantify the degree of correlation of a system. When \(\lambda = 1\), correlation does not contribute towards the total conductivity, if \(\lambda < 1\) or \(\lambda > 1\), correlation contributes negatively/positively to the total conductivity. Importantly, the \(L_{ij}\) elements can also be used to calculate the correlated transference number of species \(a\) as in Eq. (8) [27].

\[
t^a_C = \frac{\sum_{j=1}^{\text{total}} \theta_i \theta_j L_{ij}}{\sum_{i=1}^{\text{total}} \theta_i \theta_j L_{ij}} \tag{8}
\]

Our choice of reference position is the center of mass of the system as there is no species that could be treated as “solvent”.

3. Results and discussion

3.1. Density and radial distribution function

To validate the force-field and especially the 75% charge rescaling applied to the system, we compute the mass density at different \(x_{\text{NaFSI}}\) and temperatures, and compare the results with experimental values. Here a brief summary of the findings is presented, and a full discussion can be found in the Supplementary Information, Section 5. Fig. 2 summarizes the computed (empty shapes) and experimental [22] (full shapes) densities for three \(x_{\text{NaFSI}}\) at different temperatures.

We find excellent agreement between the density values from experiment and molecular dynamics, as the general trends are reproduced, and the absolute values are closely matched. It is worth highlighting that we investigated different point charge rescaling values and, remarkably, the rescaling was found not to depend on \(x_{\text{NaFSI}}\). The general observed trend follows intuition: the smaller the charge rescaling factor, the greater the over-estimation of the density across all \(x_{\text{NaFSI}}\) and temperature. This can be observed in Section 4 of the Supplementary Information, where we report two density plots equivalent to that of Fig. 2, but obtained for charge rescalings of 80% and 90%.

We also calculate the \(\text{Na}^+\) radial distribution function (RDF) with the oxygen atoms in the system (the only source of oxygen atoms is the FSI anion, see Fig. 1), details in Section 6 of the Supplementary Information. Fig. 3 summarizes the RDFs for two different \(x_{\text{NaFSI}}\) from this work (red...
3.2. Coordination and persistence

Previous reports highlighted the role of the oxygen atoms in the Na\(^+\) coordination, reporting a total coordination of 5/6 oxygen atoms within the first coordination cage, i.e., up to the first minima of the Na\(^+\)–O RDF, almost independent of x_{NaFSI} \[12\]. Here we want to study: 1. the sodium coordination in more details by looking at the actual distribution in oxygen coordination as a function of x_{NaFSI}, as well as 2. the persistence of the coordination. We want to highlight that the former analysis provides an instantaneous picture of the coordination (or solvation) of Na\(^+\) by FSI\(^-\), while the latter is useful to characterize how stable a specific coordination environment is as a function of time. With this goal in mind, after the equilibration routine every structure is evolved for a total of 7.5ns in a constant number of particles, volume (as obtained from the last stage of the equilibration routine, supplementary information section 2), and temperature (358 K). Throughout the dynamics, snapshots containing the positions of all atoms are saved every 100\(\times\)t = 0.15ps for post-processing. For a given sodium, we consider an oxygen as “coordinating” if found within a sphere of radius 3.65 Å (corresponding to the position of the first minimum of the Na\(^+\)–O RDF, Fig. 3) centered on the Na\(^+\) atom. The coordination of all sodium atoms in all snapshots is obtained from the dynamics of the four structures having the same x_{NaFSI} and then used to determine the distribution of coordination. Additionally, the resulting distribution of coordination is fitted to a Gaussian distribution.

Fig. 4(a), and (b) summarize the results for x_{NaFSI} = 0.1, and x_{NaFSI} = 1.0, respectively (the plots corresponding to the other x_{NaFSI} are presented in the Supplementary Information, Section 8).

We first observe that the mean of the distribution of coordination (X_0 in the top right corners) slightly increases by approximately 7% in the range of x_{NaFSI} investigated. Its value indicates an average coordination from the oxygen atoms between five and six, confirming previous results from the literature obtained by integrating the Na\(^+\)–O RDF \[11,12\]. The trend in the standard deviation of the distribution of coordination (\(\sigma\) in the top right corners) monotonically increases for greater x_{NaFSI}. In particular, from x_{NaFSI} = 0.1 to x_{NaFSI} = 1.0 it increases by 37%. This observation is interesting because even though the average coordination does not substantially change, the specific atoms coordinating with Na\(^+\) cations becomes more variegate. This signals some difference in the overall structure of the system at high x_{NaFSI}. Also, it resonates well with previous experimentally observed variations of the anion environment for the Na\(^+\) cation at different x_{NaFSI} using Raman spectroscopic analysis \[50\].

While it is important to understand the local environment of the sodium atoms, the distribution of coordination does not elucidate the evolution of a specific coordination cage over time. In other words, how stable are the coordination cages over time and how this impact Na\(^+\) mobility? Are the coordinating oxygen remaining the same, meaning the coordinating FSI\(^-\) drag/are dragged by Na\(^+\), or does Na\(^+\) constantly jump between different coordination shells? In Fig. 4(c) we show the percentage increase in Na\(^+\) MSD as a function of the percentage increase in total number of unique oxygen atoms found coordinating a given Na\(^+\) during the entire 7.5 ns. Intuitively, sodium experiencing a higher turn-over of coordination should be more mobile, and our findings confirm this hypothesis. Also, Fig. 4(c) highlights that at x_{NaFSI} = 1.0 there exist an uneven distribution of mobility, with only a few Na\(^+\) being highly mobile. To further help answering the above questions, we adopt a modified version of the persistence measure defined in an earlier work \[51\]. The persistence is defined as the fraction of oxygen atoms coordinating a sodium at time t that remains the same as at time t’ = 0. In other words, if the persistence is equal to one then the exact same oxygen atoms from t’ = 0 are coordinating the Na\(^+\) cations at t' = t. If the persistence is equal to zero then a completely different set of oxygen atoms is coordinating the Na\(^+\). More precisely, let G_0 and G_1 be the sets containing the indices of the oxygen atoms coordinating sodium i at time t and t’ = t, respectively:

\[
\text{Persistence}(t) = \frac{|G_0 \cap G_1|}{|G_0|}.
\]
3.3. Transport properties

In order to compute the transport properties of the Na⁺-FSI⁻ system, the structures are evolved for 75ns in a constant number of particles, volume (as after the last stage of the equilibration procedure, Section 2 of the supplementary information), and temperature (358 K) ensemble. The MSDs, Eq. (1), and positions of the center of mass of all the species are saved every 10 fs. Then the persistence for sodium i at time t, $\mathcal{P}(t)$, is defined as:

$$\mathcal{P}(t) = \frac{G_i(t) \cap G_i(0)}{|G_i|},$$  \hspace{1cm} (9)

Fig. 4(d) shows, for every other $x_{NaFSI}$ starting from $x_{NaFSI} = 0.1$, the persistence value over time, averaged over all the Na⁺ and structures with same concentration. The persistence averaged over the ensemble of all sodium, $\langle \mathcal{P}(t) \rangle_{Na^+}$, starts at one and it decays over time, meaning that, while maintaining the total average coordination as observed previously, the specific oxygen atoms contributing to the coordination change over time. This fact is not surprising per se: Na⁺ and FSI⁻ do not share any actual bond and, especially at the high temperature investigated here, it is to be expected that the specific oxygen atoms coordinating a particular Na⁺ cation change over time. We note that this behavior is different in polymer electrolyte systems, where the cation coordination cage can remain unchanged over hundreds of nanoseconds \cite{48,52}. However, the rate of this and its dependence on the salt concentration is surprising for the following reasons. First, for higher $x_{NaFSI}$ the oxygen atoms constituting the coordination cage of a specific Na⁺ are substituted at a lower rate, effectively meaning the coordination cage is less stable for lower salt concentrations. As it will be shown later, at 358 K and low $x_{NaFSI}$ both Na⁺ and FSI⁻ are more mobile than at higher salt concentrations, resulting in less consistent specific coordination. Second, for pure Na⁺-FSI⁻ (purple line in Fig. 4(d), after 7.5ns the coordination of the Na⁺ is made, on average, of more than 20% of the oxygen atoms coordinating it at the beginning of the simulation.

A summary of the transport properties for the Na⁺-FSI⁻ systems is presented in Fig. 5. On the axes of all plots in Fig. 5 there is $x_{NaFSI}$. In Fig. 4(a), and (b) show the probability of the number of oxygen atoms coordinating a Na⁺ for $x_{NaFSI} = 0.1$, and $x_{NaFSI} = 0.2$, respectively. Every histogram is fitted with a Gaussian distribution (dark purple line); $X_0$ and $\sigma$ at the top right corner of the (a–b) plots correspond to its mean and standard deviation, respectively. (c) shows the percentage difference in MSD versus the percentage difference in total unique oxygen atoms within 3.65 Å during the whole 7.5ns simulation. (d) shows the persistence, computed as Eq. (9), of the specific oxygen atoms coordinating a given Na⁺ at different $x_{NaFSI}$. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
reduced from 8.7 mS cm\(^{-1}\) to 1.0 mS cm\(^{-1}\) (88% drop), and the experimental [22] decreases from 23.4 mS cm\(^{-1}\) to 3.5 mS cm\(^{-1}\) (85% drop). The uncertainty of the computed conductivity values for the four structures with equal \(x_{\text{NaFSI}}\) is generally small, indicating a weak dependence of the conductivity on the initial structure. This observation gives us confidence that the adopted number of independently-generated structures is sufficient, and the results statistically robust. The ratio between the conductivity values from the Nernst-Einstein and the correlated approach, \(\lambda\), is between 0.6 and 0.8, with the only exception being \(x_{\text{NaFSI}} = 0.0\), which correspond to a pure \(\text{Na}^+\text{FSI}^-\) salt system and has \(\lambda \approx 1\). The meaning of \(\lambda < 1\) is that the intra- and inter-species correlations have an overall negative effect on the total conductivity, lowering its value as compared to the case where these correlations are ignored. Furthermore, \(\lambda \neq 1\) indicates that results obtained using the uncorrelated Nernst-Einstein approach are not capturing the full transport features of the system.

Fig. 5(b) shows \(\text{t}_{\text{Na}}^+\) as a function of \(x_{\text{NaFSI}}\) from two experimental works, and our study. Both experimental works [12,22] (black and gray lines) adopt the Bruce-Vincent method for measuring the \(\text{t}_{\text{Na}}^+\). The authors in Ref. [12] highlight how their \(\text{t}_{\text{Na}}^+\) findings agree with those of Ref. [22] for \(x_{\text{NaFSI}} = 0.4\) or greater. However, they do not address the differences between the two measurements in the range \(x_{\text{NaFSI}} = 0.1\) to \(x_{\text{NaFSI}} = 0.3\), which might be caused by dissimilarities in the experimental setups. Given the apparently identical setup of the two set of measurements, we believe it is likely that these results differ due to experimental uncertainties. Interestingly, the steady increase in \(\text{t}_{\text{Na}}^+\) found in Ref. [22] (black line) is reproduced by our Nernst-Einstein estimation using Eq. (4), while the practically-zero sodium transference number up to approximately \(x_{\text{NaFSI}} = 0.2\) observed in Ref. [12] (gray line) is very well captured by our calculations using the fully-correlated approach, Eq. (8). It should be noted that experimental measurements using the rigorous approach based on concentrated-solution theory as developed by Newman and coworkers [25,57] should provide more reliable results than the widely-used analysis by Bruce and Vincent [33,34], which assumes that the electrolyte exhibits ideal solution behavior.

Similarly, in order to use MD-based approaches to compute conductivity and transference number it is important to take into account the full amount of correlation, which is systematically overlooked in the literature even in the case of such highly-correlated systems. For instance, recent experimental findings report negative transference numbers for both polymer based [15] and different salt/ionic liquid [16] electrolytes. A negative transference number can be obtained when vehicular transport mechanism for the cation of interest prevails, the “vehicle” being a cluster with overall negative charge, containing a higher number of anions than cations [15,16,48]. Comparing the transference number as obtained from Eq. (4) (uncorrelated motion of the ions) and Eq. (8) (full accounting of the intra- and inter-species correlation), only the latter can yield negative values, and thus uncover and help explain the physics of the system.
In fact, specifically for the Na\(^{+}\)/FSI\(^{-}\) system, we do report a negative transference number of \(t_{Na}^{an} = -0.006(1)\) and \(t_{FSI}^{an} = -0.008(3)\) for \(x_{NaFSI} = 0.1\) and \(x_{NaFSI} = 0.2\), respectively. The near-zero transference number observed in experiments (gray line from Ref. [12]) for \(x_{NaFSI}\) up to \(x_{NaFSI} = 0.2\) was conjectured to stem from either neutral or negatively charged Na\(^{+}\)/FSI\(^{-}\) aggregates of low mobility [12] that do not contribute or contribute negatively to the Na\(^{+}\) conductivity. The presence of neutral clusters is highly unlikely at these low \(x_{NaFSI}\), as FSI\(^{-}\) has four oxygen atoms (and it is the only species with oxygen atoms), and, consistent with the literature, we showed that Na\(^{+}\) is systematically coordinated by 5/6 oxygen atoms (and the distribution of the coordination is peaked for most for these low \(x_{NaFSI}\)). As a result, the smallest Na\(^{+}\)/FSI\(^{-}\) aggregate containing only one Na\(^{+}\) has to include at least two FSI\(^{-}\) anions to satisfy the Na\(^{+}\) coordination. Ignoring the possibility of neutral clusters and acknowledging that the coordination is very much peaked at 5/6 oxygen atoms, the overwhelming presence of negatively charged clusters would result in an important contribution of the vehicular mechanism to the total transport. This would explain a negative \(t_{Na}^{ar}\), which experimentally could be hidden by the intrinsic assumptions of the Bruce-Vincent analysis, which is only valid for ideal solutions and cannot measure negative transference numbers [33,34].

The appearance of negative transference number at low \(x_{NaFSI}\) is unexpected. In other reported cases of negative transference number, it occurs at high concentration. For instance, for aqueous ZnCl\(_2\) a negative transference number has been reported for salt molar concentrations exceeding 2 M [58]. For LiTFSI in PEO electrolyte system a negative lithium transference number has been measured [15] for salt concentrations above 0.12. At low salt concentration Li atoms are almost entirely coordinated by the oxygen atoms from the PEO backbone, and asymmetrical clustering between Li cations and TFSI anions was shown to become increasingly important at high LiTFSI salt concentration [48]. We anticipate the opposite being true for the Na\(^{+}\)/FSI\(^{-}\) system, based on electrostatic considerations: aggregates between Na\(^{+}\) cations and FSI\(^{-}\) anions are expected to be present even at small \(x_{NaFSI}\). On the other hand, at higher \(x_{NaFSI}\) bigger Na\(^{+}\)/FSI\(^{-}\) clusters should appear, consequently the fraction Na\(^{+}\) cations to coordinating FSI\(^{-}\) anions increases, up to the limit of \(x_{NaFSI} = 1.0\), where the system is expected to be in a single neutral cluster spanning the entire system. As \(t_{Na}^{ar}\) goes from negative to positive and steadily increasing between \(x_{NaFSI} = 0.2\) and \(x_{NaFSI} = 0.3\), Fig. 5(b), we anticipate a profound difference in the cluster population between these two \(x_{NaFSI}\).

Lastly, Fig. 5(c) summarizes the entries of the \(L_{ab}\) matrix for all \(x_{NaFSI}\). A negative \(L_{ab}\) has the physical meaning that species \(a\) moves on average opposite to species \(b\). The bottom three rows of Fig. 5(c) correspond to the intra-species correlated self-diffusion (\(a = b\)), and are positive by definition. As \(x_{NaFSI}\) increases, the magnitude of \(L_{ab}\) decreases as observed in the self-diffusivity values [22,24]. More interesting are the top three rows of Fig. 5(c), which correspond to the cases \(a \neq b\). In the first column, corresponding to \(x_{NaFSI} = 0.0\), \(L_{Na/FSI}^{FSI}\) and \(L_{Na/Pyr}_{13}^{FSI}\) are zero as no Na\(^{+}\) is present in the system, while \(L_{Pyr}_{13}/FSI\) is negative. In our MD simulations, the total center of mass of the system is at rest by conservation of total momentum. As a consequence, if the center of mass of one species moves in one direction, the other has to compensate by moving in the opposite direction [29]. For \(x_{NaFSI} = 0.1\) and \(x_{NaFSI} = 0.4\) (but predominantly up to \(x_{NaFSI} = 0.2\)), Na\(^{+}\) and FSI\(^{-}\) have a non-zero, positive correlation, reinforcing the conjecture that they aggregate in clusters, which then diffuse together. Consistent with this picture is the negative sign characterizing \(L_{Na/Pyr}_{13}^{FSI}\) and \(L_{Pyr}_{13}/FSI\).

3.4. Na\(^{+}\)/FSI\(^{-}\) Clustering

The presence of asymmetric Na\(^{+}\)/FSI\(^{-}\) aggregates has been extensively used to rationalize our findings. Thanks to the molecular resolution of our simulations, now we can analyze the cluster population and thereby cementing the understanding of the physics of this system. We analyze clusters of Na\(^{+}\) cations and FSI\(^{-}\) anions by looking at their spatial correlation during the simulation, i.e., agglomerates where anions and cations are located nearby. Here we use the same data as in Fig. 4. At every snapshot, clusters (or, equivalently, agglomerates) are identified following a variant of the single-linkage clustering algorithm previously used for such analysis [48]: iteratively, Na\(^{+}\) and FSI\(^{-}\) are grouped based on a threshold distance of 3.65 Å between Na\(^{+}\) and oxygen atoms from FSI\(^{-}\). The 3.65 Å distance criteria correspond to the location of the first minimum of the Na\(^{+}\)/O radial distribution function, Fig. 3. With \((C_{i}, A_{j})^{\pm}/j\) we denote an agglomerate comprising \(i\) Cations (Na\(^{+}\)), \(j\) Anions (FSI\(^{-}\)), charge \(i - j\), and \(j/i\) number of anions coordinating a cation on average. At every snapshot and for all four structures at every \(x_{NaFSI}\), the composition and number of appearances of every cluster is saved. The final reported cluster frequency is the ratio between the number of cluster appearances and the total number of appearances of all clusters.

Fig. 6 presents a graphical summary of our findings. Plot (a) to (e) show the frequency of appearance of all the clusters for selected \(x_{NaFSI}\): (a): \(x_{NaFSI} = 0.1\), (b): \(x_{NaFSI} = 0.2\), (c): \(x_{NaFSI} = 0.3\), (d): \(x_{NaFSI} = 0.4\), and (e): \(x_{NaFSI} = 1.0\). The numbers \(i\) of Na\(^{+}\) and \(j\) of FSI\(^{-}\) participating to a given \((C_{i}, A_{j})^{\pm}/j\) cluster are reported on the x and y axis, respectively. The vertical black line indicates the total number of Na\(^{+}\) present in the structures at a given \(x_{NaFSI}\), and therefore it constitutes an upper limit to the Na\(^{+}\) in the clusters. The oblique black line corresponds to \(i = j\), i.e., same number of cations and anions.

First we observe that all clusters lie above the \(i = j\) line, in other words, FSI\(^{-}\) molecules systematically outnumber Na\(^{+}\) cations in clusters, confirming our earlier hypothesis on the presence of asymmetrical clusters. The only exception is \(x_{NaFSI} = 1.0\) where 100% of the cluster population has \(i = j\) (and there is only one single cluster extending in all the volume, Fig. 6(h)), however, this can be trivially explained by the fact that it corresponds to a pure salt structure. It is worth reiterating that the overall simulation is charge neutral, consequently, the other cation in the structure, Pyr\(_{13}\), balances the overall negative Na\(^{+}\)/FSI\(^{-}\} clusters. At \(x_{NaFSI} = 0.3\), the most likely agglomerates including one Na\(^{+}\) is \((C_{1}, A_{3})^{\pm}\) where five FSI\(^{-}\) molecules provide the 5/6 oxygen atoms coordination Fig. 6(f), and not a single instance of neutral \((C_{1}, A_{1})^{\pm}\) (or higher order neutral cluster) is found. For larger clusters comprising more than one Na\(^{+}\) (for instance two as in Fig. 6(g)), a fraction of the FSI\(^{-}\) molecules is shared among more than one Na\(^{+}\) cation, consequently lowering the average number of FSI\(^{-}\) molecules required to satisfy the sodium coordination. At \(x_{NaFSI} = 0.2\), there appear instances of bigger clusters almost including all Na\(^{+}\) in the system, albeit very rare, and smaller clusters such as \((C_{1}, A_{2})^{\pm}\) \((C_{1}, A_{1})^{\pm}\) and \((C_{2}, A_{0})^{\pm}\) still dominate the overall population of agglomerates. At \(x_{NaFSI} = 0.3\) we observe an interesting change in behavior: the cluster population is polarized in either small clusters or clusters nearly including all Na\(^{+}\), and essentially nothing in between. This effect becomes more and more prominent the higher the \(x_{NaFSI}\) after \(x_{NaFSI} = 0.4\), and at the same time the “single cluster” extreme dominates the cluster population. Interestingly, \(x_{NaFSI} = 0.3\) coincides with \(t_{Na}^{ar}\) becoming positive, and steadily increasing for each subsequent \(x_{NaFSI}\). The single cluster extreme corresponds to a percolated Na\(^{+}\)/FSI\(^{-}\) salt region, in which Na\(^{+}\) cations are more mobile than the FSI\(^{-}\) molecules, essentially moving towards a single diffusing ion situation. Thus, the more dominant is this configuration, the higher the \(t_{Na}^{ar}\). This explains the steadily increasing \(t_{Na}^{ar}\) once the threshold of \(x_{NaFSI} = 0.3\) is overcome.

To more precisely quantify the relative importance of each cluster at every \(x_{NaFSI}\), in Section 9 of the Supplementary Information we report the top four most frequent clusters, along with their percentage...
Here the main results are briefly discussed. At $x_{NaFSI} = 0.1$, the agglomerates containing at most two $Na^+$ have a cumulative frequency of over 81%, and 54% for $x_{NaFSI} = 0.2$, therefore accounting for the majority of clusters. At these $x_{NaFSI}$, the system is organized in small negative $Na^+$ clusters floating in a sea of $Pyr_{13}^+$, which act as charge-balancing cation. At $x_{NaFSI} = 0.3$, despite the most frequent agglomerates are still containing a few sodium cations, the fraction of small clusters containing at most two $Na^+$ drops to 31%, and to 12% for $x_{NaFSI} = 0.4$. This confirms the visual clues from Fig. 6 (c), where the cluster population is essentially divided in either small, unconnected clusters or a single cluster. $t_{Na^+}$ becomes positive at $x_{NaFSI} = 0.3$, Fig. 5(b), in good agreement with the lower relative importance of small cluster as opposed to big clusters. From $x_{NaFSI} = 0.4$ onward, the distribution of agglomerates becomes more and more polarized towards bigger clusters, and the most frequent as well as the one accounting for the majority include all the $Na^+$ in the system. Furthermore, the expected trend as a function of $x_{NaFSI}$ of fewer FSI molecules on average coordinating a given $Na^+$ is clearly observed. The bigger the cluster is, the higher the fraction of FSI anions shared among multiple $Na^+$ cations (Fig. 6(f) and (g)). This can also be used to explain the broader distribution in sodium coordination observed in Fig. 4(b). Intuitively, when the system contains many more FSI anions than Na$^+$ cations, we showed that they organize in small clusters, which have to satisfy fewer Na$^+$ coordination and hence a more peaked distribution of coordination is to be expected. On the other hand, in the limit of $x_{NaFSI} = 1.0$ and, therefore, one FSI anion per Na$^+$ cation on average, the structure has less configurational freedom and a broader spectrum of coordination can be observed.

4. Conclusions

In this work we used a combination of molecular dynamics simulations with concentrated solution theory to highlight the importance of ion-ion correlation on the transport properties of ionic liquids for battery electrolytes. A fully correlated approach is systematically overlooked in the literature in favor the dilute-limit approach, which ignores correlations and therefore cannot capture the full complexity of the system. In the case of the promising Na$^+$-$Pyr_{13}^+$-FSI electrolyte system we demonstrate that the inclusion of full correlation in the analysis yields qualitatively different predictions from approximate uncorrelated methods based on Nernst-Einstein equations. A surprisingly low and even negative transference number is observed for $x_{NaFSI}$ lower than $x_{NaFSI} = 0.2$. This result also questions the applicability, even at moderate concentrations, of the popular Bruce-Vincent measurement technique which is based on ideal solution theory and cannot predict negative transference number. A negative transference number indicates...
that the cations move in the “wrong” direction, opposite to the direction expected from the electrical potential gradient, limiting the charge-discharge rate capability of the battery. At higher concentrations the transference number is found to become positive and to steadily increase to values closely matching the experimentally observed trend. Our simulations confirms the hypothesis that these behaviors are caused by the formation of asymmetric ion clusters.

We systematically characterize the nature of such agglomerates at different NaFSI. The most prominent observation is a sharp difference in the cluster size distribution between $\text{NaFSI} = 0.2$ and $\text{NaFSI} = 0.3$, which correlates with the transition from negative to positive of $\text{t}_{\text{Na}}^+$. At low $\text{NaFSI}$ the majority of clusters are negatively charged, so that Na$^+$ is effectively drifting with the FSI$^-$ molecules constituting its coordination, contributing negatively to the transference number. At sodium molar fractions larger than $\text{NaFSI} = 0.3$, a single large cluster accounting for all Na$^+$ in the system becomes prominent, indicating the transition towards a solid-state system rather than an ionic liquid one.

In summary, we emphasize the general importance of a rigorous approach based on concentrated non-ideal solution theory for both experimental and theoretical studies, which should be adopted more broadly for investigating similar systems where strong interactions lead to non-trivial transport phenomena resulting from the formation of asymmetric cation-anion clusters.

Conflicts of interest

There authors declare no competing financial interests.

### Appendix A. Supplementary data

Supporting Information: Number of species/atoms/molecules at every NaFSI, details of the equilibration procedure, example plots for MSD and PCF over time, density values at different temperatures for different charge rescaling factors, density values at different temperature for all the investigated NaFSI, details on the RDF calculations, viscosity, coordination histograms, clustering table.

Supplementary data to this article can be found online at [https://doi.org/10.1016/j.jpowsour.2019.04.085](https://doi.org/10.1016/j.jpowsour.2019.04.085).

### References


